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Abstract: The insect gut is home to an extensive array of microbes that play a crucial role in the
digestion and absorption of nutrients, as well as in the protection against pathogenic microorganisms.
The variety of these gut microbes is impacted by factors such as age, diet, pesticides, antibiotics, sex,
and caste. Increasing evidence indicates that disturbances in the gut microbiota can lead to compro-
mised insect health, and that its diversity has a far-reaching impact on the host’s health. In recent
years, the use of molecular biology techniques to conduct rapid, qualitative, and quantitative research
on the host intestinal microbial diversity has become a major focus, thanks to the advancement of
metagenomics and bioinformatics technologies. This paper reviews the main functions, influencing
factors, and detection methods of insect gut microbes, in order to provide a reference and theoretical
basis for better research utilization of gut microbes and management of harmful insects.
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1. Introduction

The insect microbial community plays an important role in nutrient absorption, devel-
opment of immunity, and resistance to foreign pathogenic organisms [1–3]. Gut microbes
and hosts are interdependent and mutually restrictive and play an important role in host
health [4]. Alterations in the intestinal community may influence insecticide resistance,
physiological functions, and the eating habits of the host. Insect intestinal microorganisms
have shown great application potential in the fields of pest prevention and control, uti-
lization of insect resources, and industrial production (such as degrading cellulose and
providing trace elements) [5–7]. Currently, functional studies of insect intestinal microor-
ganisms remain challenging, in part because of the complexity of their composition, which
may vary widely among individuals [8,9]. Therefore, understanding the function and
composition of insect intestinal microorganisms is very important for regulating the rise
and fall of the population, studying the relevant evolutionary mechanisms, and excavating
strains with special functions [7].

Historically, traditional culture-based methods have been used to identify insect gut
microbial diversity with many drawbacks (such as the fact that many intestinal bacteria
cannot be obtained through culture and cannot systematically reveal the characteristics of
insect intestinal flora), hindering the in-depth study of gut microbiota. In recent years, the
development and application of new technologies such as metagenomics and bioinformatics
have considerably enhanced our understanding of the composition and variety of the insect
gut microbiota. This review summarizes insect gut function and the factors that influence
insect gut microbes. In addition, we compared past and present methods for detecting
insect intestinal microorganisms.

Microorganisms 2023, 11, 1208. https://doi.org/10.3390/microorganisms11051208 https://www.mdpi.com/journal/microorganisms

https://doi.org/10.3390/microorganisms11051208
https://doi.org/10.3390/microorganisms11051208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com
https://orcid.org/0000-0003-3812-8619
https://doi.org/10.3390/microorganisms11051208
https://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/article/10.3390/microorganisms11051208?type=check_update&version=1


Microorganisms 2023, 11, 1208 2 of 16

2. Functional Roles of the Insect Gut Microbiota

There are complicated microbial communities in the gut of insects, including bacteria,
archaea, fungi, and viruses, which play an important role in the host’s nutrient metabolism,
immune defense, and drug resistance enhancement. Insect gut microbiota supply host
nutrition and maintain gut microbial homeostasis by generating antimicrobial compounds
(bacteriocins and lipopeptides), metabolites such as short-chain fatty acids and vitamins,
and by degrading plastics or inducing immune responses [3,10–12]. Xiao et al. found that
Drosophila gut microbial homeostasis is synergistically regulated by Duox-ROS, AMPs, and
C-type lectins [12]. In addition, the intestinal flora of insects can also recycle urea and
uric acid, help insects defend against the infection of foreign pathogenic microorganisms,
maintain body homeostasis, and facilitate the regular physiological activities of the host
and the progress of various life activities [13].

2.1. Nutrient Metabolism
The intestinal microbiota of insects can secrete a variety of digestive enzymes to

participate in the digestion of food and supply nutrients for insects. Common insects
such as Bombyx mori, Locusts, Aedes albopictus, Termite, etc., have intestinal microorganisms
that can secrete a variety of digestive enzymes. Pseudomonas, Klebsiella pneumoniae, and
Clostridium flexneri in the intestinal microbiota of B. mori can secrete cellulase and have
the ability to degrade carbohydrates [14]. Cellulase secreted by Klebsiella pneumonia in the
intestinal tract of Locusta migratoria manilensis can degrade grass to generate carbohydrates,
amino acids, and sugars for the host to utilize [15]. After Aedes albopictus ingests plant
nectar, part of it is directly digested and absorbed, and the other part is transferred to the
gut, where it is transformed into a common energy source for the host and gut microbes
under the action of gut bacteria or fungi [16]. Cellobiohydrolase, which is secreted by
microorganisms in the gut of Termites, can digest cellulose to provide energy for the host [17].
In addition, Klebsiella, Proteus vulgaris, Erwinia sp., and Serratia liquefaciens were isolated
from the gut of Diatraea saccharalis larvae by in vitro culture, which can utilize starch,
xylanolytic, pectinolytic, and polysaccharide, respectively [18]. Zheng et al. reveal that
honeybee intestinal bacteria can degrade plant polymers from pollen and that the resulting
metabolites provide nutrients for the host [19]. In addition, some intestinal symbionts
can provide the host with amino acids and vitamins [20]. Hu et al. reported that the gut
bacteria of ants utilize reclaimed recycled N to recycle urea or uric acid to synthesize amino
acids required by the host in large quantities [13]. Duplais et al. reported that intestinal
microorganisms in Herbivorous turtle ants Cephalotes can recycle metabolic waste rich
in nitrogen to enrich nutritional components and supply amino acids for the host [21].
Blow et al. confirmed that Acyrthosiphon pisum can obtain vitamins B2 and B5 through
intestinal symbiotic bacteria, Buchnera aphidicola, and supplement micronutrients [6]. These
results indicate that gut microbes are a promising source of various digestive enzymes and
trace elements.

In addition, the intestinal flora participates in the nutrient metabolism of insects and
can also influence the feeding behavior, growth, and development of the host. Because of
its simple intestinal microorganism species and easy feeding, Drosophila is often used as a
model to study the function of symbiotic bacteria [22]. Wong et al. inoculated Drosophila
eggs on a feed comprising Acetobacter pomorum and Lactobacillus plantarum (bacteria isolated
from the gut or body of Drosophila) to investigate the behavioral responses of Drosophila
to microorganisms. The research found that Drosophila vaccinated with A. pomorum had a
diminished tendency to choose a high-protein diet, while flies vaccinated with L. plantarum
were more likely to eat foods with higher carbohydrates [23]. In addition, both adults and
larvae of D. melanogaster were attracted to volatile compounds from Saccharomyces cerevisiae
and L. plantarum but repelled by Acetobacter malorum in behavioral assays [24]. Another
study found that the germ-free Rhynchophorus ferrugineus Olivier larval development and
weight had considerably diminished. In addition, after the introduction of intestinal
microbiota, the content of hemolymph protein, glucose, and triglycerides significantly
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increased, and it was verified that the protein content level was restored after feeding sterile
R. ferrugineus Olivier and Lactococcus lactis. Enterobacter cloacae significantly increases its
hemolymph triglyceride and glucose content [25]. The changes in host behavior induced
by these gut bacteria may reflect the metabolism of the gut microbiota and the nutritional
needs of the host [26]. The above research supplies fundamental data for the breeding of
insects and the functional research of intestinal microorganisms (Table 1).

Table 1. The role of insect gut microbes in nutrient metabolism.

Insect Bacteria Genera Function References

Bombyx mori Pseudomonas, Klebsiella pneumoniae,
Clostridium flexneri

It secretes cellulase, which
breaks down carbohydrates to
provide energy for the host.

[14]

Locusta migratoria manilensis Klebsiella pneumoniae

It breaks down grass into
carbohydrates, amino acids

and sugars, providing energy
to the host.

[15]

Aedes albopictus Lelliottia, Cladosporium, Aspergillus,
Ampullimonas, Cyberlindnera

It can digest food and provide
nutrients for insects. [16]

Herbivorous turtle ants Cephalotes Burkholderiales, Opitutales
It can participate in nitrogen
recycling to provide amino

acids for the host.
[13]

Acyrthosiphon pisum Buchnera aphidicola It can provide the host with
vitamins B2 and B5. [6]

Honeybee Gilliamella apicola
and Lactobacillus sp.

It produces SCFAs that
promote host growth. [19]

Drosophila

Acetobacter pomorum, Lactobacillus
plantarum, Saccharomyces cerevisiae,

Lactobacillus plantarum,
Acetobacter malorum

It can influence the feeding
behavior of the host. [23]

Rhynchophorus ferrugineus Olivier Lactococcus lactis,
Enterobacter cloacae

It can affect protein, glucose,
and triglyceride levels in the

host’s hemolymph.
[25]

2.2. Immune Defense
Insects are constantly in contact with pathogenic microorganisms such as viruses,

fungi, and bacteria. Insects primarily rely on insect intestinal epithelial cells to generate
reactive oxygen species (ROS) and antimicrobial peptides (AMPs) to resist the invasion of
pathogenic microorganisms and preserve intestinal microbial homeostasis [27,28]. Recent
research has shown that the insect gut microbiota plays a role in helping the host resist
infection by foreign pathogens. Shao et al. found that Enterococcus mundtii can stably
secrete a class IIa bacteriocin (mundticin KS) in the intestine of Spodoptera littoralis against
invading bacteria to maintain the balance of the host gut microbial community [29]. Akbar
et al. inoculated RPMI 1640 with intestinal bacteria isolated from cockroaches. Cockroach
intestinal flora secretions can effectively inhibit Gram-positive (methicillin-resistant Staphy-
lococcus aureus, Streptococcus pyogenes, Bacillus cereus) and Gram-negative (Escherichia coli
K1, Salmonella enterica, etc.) [30]. Knight et al. isolated antifungal cyclic lipopeptides
(bacteromycin F and fengycin) from the metabolites of Bacillus subtilis, which have in-
hibitory effects on a variety of fungi such as Alternaria alternata, Aspergillus niger, and
Cladosporium sp. [31]. The above studies reveal that the metabolites of insect gut microbiota
play an important role in maintaining gut microbial homeostasis and resisting the invasion
of pathogenic microorganisms.

Recent studies have shown that gut commensals are important participants in the host
immune system, and there are diverse interactions between gut commensals and the host



Microorganisms 2023, 11, 1208 4 of 16

immune system [32]. Pandey et al. analyzed the possible links between the gut microbial
dynamics of the model organism Spodoptera litura and stress-inducing factors and found
that Pseudomonas and Enterobacter are related to the inflammatory effects of insects. Acineto-
bacter, on the other hand, promotes larval fitness and decreases the inflammatory effects
generated by dextran sulfate sodium [33]. Krams et al. demonstrated that Enterococcus was
the main genus in the midgut of G. mellonella larvae, and the number of Enterococcus posi-
tively correlated with antimicrobial peptide-related genes (such as Gallerimycin, Gloverin,
6-tox, Cecropin-D, and Galiomicin) [1]. In addition, the R. ferrugineus Olivier larvae had
higher antibacterial activity and phenoloxidase activity, while the immune-related genes
and survival rate of sterile larvae were significantly down-regulated. The reintroduction
of sterile R. ferrugineus Olivier larvae into the gut microbiota enhanced their immunity
and survival [34]. Gao et al. revealed that the gut PGRP-LA gene of Anopheles stephensi
could regulate immune responses by sensing the dynamics of the gut microbiota [35].
Park et al. demonstrated that the gelatinase secreted by Enterococcus faecalis in the intestinal
tract of Galleria mellonella larvae can degrade antimicrobial peptides (Gm cecropin) in the
hemolymph and damage the immune system [36]. The above studies have confirmed that
intestinal commensal flora has a stimulating effect on host immunity. The research on the
interaction mechanism between gut microbiota and insect immunity will help provide new
strategies for pest management.

2.3. Antioxidation Function
Under normal circumstances, the normal metabolism of oxygen in the insect host

will generate reactive oxygen and free radicals, but when they accumulate too much,
they will destroy cells and endanger the health of the insect. Therefore, the elimina-
tion of excessive oxidation and free radicals can prevent related diseases. Previous stud-
ies indicated that different gut probiotics can exert their antioxidant power in different
ways to maintain host health [37]. Saeedi et al. found that Lactobacillus can activate
liver Nrf2 in Drosophila and mice by producing 5-methoxyindoleacetic acid, consequently
achieving the “distant control” of oxidative stress in the liver and thus protecting the
liver from oxidative damage induced by acetaminophen overdose and acute ethanol poi-
soning [38]. Elzeini et al. found that EPS (extracellular polysaccharide) generated by
Enterococcus faecalis-HBE1, Lactobacillus brevis-HBE2, E. faecalis-HBE3 and E. faecalis-HBE4
isolated in the intestinal tract of Apis mellifera L. has antioxidant activity to scavenge
DPPH free radicals [39]. Barretto et al. found that staphyloxanthin pigment generated by
Staphylococcus gallinarum KX912244 isolated in the intestinal tract of B. mori can inhibit
S. aureus, E. coli, and Candida albicans and scavenge DPPH free radicals [40]. Although the
active metabolites of probiotics have better antioxidant functions, further investigation is
essential to explore the mechanism of action.

2.4. Enhance Host Drug Resistance
Due to the excessive and irregular use of insecticides, insects have evolved drug

resistance, which leads to non-target insect death and environmental pollution [41]. Insect
drug resistance mechanisms are dominated by metabolic resistance and target resistance,
and these mechanisms are primarily caused by the evolution of the host genome [41].
Studies have found that certain gut symbionts can degrade chemical pesticides, which in
turn affects host resistance to pesticides. Chen et al. found that Stegotrophomonas of B. mori
can increase the content of essential amino acids in the gut so that the larvae can more
effectively avoid the effects of chlorpyrifos [42]. Trinder et al. found that supplementation
of Lactobacillus rhamnosus in the Drosophila melanogaster diet could reduce the toxicity of
organophosphorus pesticides [43]. Danilenko et al. described that Lactobacillus species of
L. plantarum (strains H28, H24, KX519413, KX519414, LP8, LP25, LP86, LP95, and LP100)
and Lactobacillus kunkeei were characterized by an increased antioxidant potential that
protects against different pesticides in the gut of honey bees [44]. Sato et al. found that
the intestinal symbiotic bacteria of Riptortus pedestris can degrade the organophosphorus
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insecticide into 3-methyl-4-nitrophenol, which is bactericidal but not insecticidal [45]. Itoh
et al. found that the bed bug R. pedestris can acquire resistance to the insecticide phosphine
(MEP) by acquiring MEP-degrading Burkholderia from the environment [46]. This indicates
that the gut microbiota plays an important role in host drug resistance and that part of the
gut microbiota can defend the host from chemical pesticides.

3. Factors Affecting the Gut Microbiome of Insects

3.1. Effects of Feed, Antibiotics and Culture Temperature on Insect Gut Microbes
The study finds food, antibiotics, and temperature have important effects on insect gut

microbial diversity [47–49]. High-throughput sequencing technology was used to study the
effects of Spodoptera frugiperda feeding on maize, wild oats, oilseed rape, and pepper on host
gut microbial community structure and diversity. The results revealed that the gut microbial
diversity of insects fed rapeseed was the highest and the gut microbial diversity of insects
fed wild oats was the lowest, while the gut microbial diversity of insects fed maize without
a seed coating agent was significantly higher than that with such an agent [50]. Liang et al.
found that the midgut microbes of the 5th instar Helicoverpa armigera larvae feeding on
lettuce leaves were significantly different from those of common silkworms at the genus
level. The bacteria of the genera Acinetobacter and Anaerofilum are the main bacteria, while
Bacillus and Arcobacter are the main bacteria in the normally fed H. armigera [51]. Priya et al.
found that bacterial diversity varied widely between H. armigera from different host plants
and the same host plant from different locations. Compared with insects that feed on crops,
insects fed on artificial diets have significantly fewer gut microbial species [52]. Thakur et al.
analyzed the effects of adding streptomycin to artificial diets on the survival and fitness
of Spodoptera litura (Lepidoptera: Spodoptera) and its gut microbial diversity. Changes in
microbial diversity were found in the guts of the larvae, with the larvae growing faster
compared to the treatment group without antibiotics. The total activity of various digestive
enzymes increased, and the activity of detoxification enzymes decreased significantly [48].
Wang et al. found that the overwintering stage of Dendroctonus armandi led to changes in
the intestinal flora. The Proteobacteria (mainly �-Proteobacteria) become the main phylum
in the larva gut, followed by Actinobacteria and Firmicutes [53]. In addition, recent studies
have found that the survival of Nezara viridula depends on intestinal symbiotic bacteria. An
increase in temperature may result in a decrease in intestinal symbiotic bacteria content
and host survival, and the antibiotic-treated animals also induced the same results [54].
Hence, studying the influence of the external environment on the microorganism diversity
of the insect intestinal tract can be of positive significance for us to screen beneficial
microorganisms and manage the rise and fall of pest populations [55].

3.2. Effects of Sex and Developmental Stage on Insect Gut Microbes
The diversity and proportion of insect gut microbes differed by sex and developmental

period. The intestinal tract of male and female larvae of the 5th instar of B. mori was
dominated by Enterococcus, Delftia, Pelomonas, Ralstonia, and Staphylococcus. The abundance
of Enterococcus was significantly lower in female larvae than in male larvae, while the
abundances of Delftia, Aurantimonas, and Staphylococcus were significantly increased [56].
Chen et al. reported that the dominant phyla Proteobacteria, Firmicutes, Actinobacteria,
and Bacteroidetes were detected in the whole life history of silkworms and found that
these four phyla were also present in the mulberry-eating larvae of Acronicta major and
Diaphania pyloalis. The microbial community changes significantly between the early and
late larvae of B. mori, consistent with host developmental changes [57]. The eggs of
Spodoptera exigua are rich in Enterococcus, Pseudomonas, and Asaia, while Methylobacter and
Halomonas are dominant in newly hatched larvae, and Enterococcus dominates in 3rd and
5th instar larvae. The pupal stage has the highest microbial diversity. There were no
significant differences between newly hatched male and female S. exigua larvae [58]. In
addition, bacteria and fungi showed dynamic changes at various developmental stages of
the brown planthopper. The predominant fungal genus in the nymphal and adult stages
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was Wallemia, and the abundance of Acinetobacter in the egg stage was significantly reduced.
The microbial community composition in female and male brown planthoppers is different
and sex-dependent [59]. The above results reveal that there are different dominant flora
in different developmental stages and sexes of insects, which may play an important role
in different developmental stages and sexes, but the strains with specific functions need
further analysis and experimental proof.

3.3. Effects of Pesticides on Insect Gut Microbes
Extensive use of pesticides will affect insects’ food digestion, nutrient absorption,

metabolism, immune response, defense against pathogenic bacteria invasion, and microbial
homeostasis [56,60,61]. Li et al. found that the activity and expression of enzymes related
to nutrient metabolism in the midgut were unregulated, and the growth of B. mori was
slow after feeding on phoxim [62]. Sun et al. studied the effects of microbial pesticides
and camptothecin on the mortality of two lepidopteran insects, Trichoplusia ni and S. exigua.
The bioassay results demonstrated that camptothecin significantly enhanced the toxicity of
B. thuringiensis to S. exigua and T. ni, as well as to Autographa californica nucleopolyhe-
drovirus (AcMNPV) and S. exigua nuclear polyhedrosis virus (SeMNPV). It is speculated
that camptothecin can affect the permeability of the peritrophic membrane to increase
its toxicity [63]. Wei et al. studied the synergistic interaction mode of gut microbiota
and B. bassiana in mosquitoes and confirmed that fungi can reduce the abundance of gut
microbiota and the number of probiotics. Fungi can significantly increase the abundance
of the opportunistic pathogen Serratia marcescens, which overgrows in the midgut and
transfers to the hemocoel, causing systemic infections and accelerating mosquito death [60].
Kumar et al. found that the proportion of Proteobacteria increased at 48 h and 96 h but
decreased after 144 h after B. mori infection with BmBDV. At the genus level, the proportion
of Enterococcus increased gradually after BmBDV infection of B. mori, but the proportion
of Incertae sedis increased at 96 h, while the proportion of Lactococcus decreased at 96 h.
Enterococcus abundance was positively correlated with the expression levels of spatzle-1,
PGRP-LE, and PGRP-LB genes, indicating that the increased abundance of Enterococcus
activates the Toll and IMD immune pathways [64]. Motta et al. found that glyphosate
consumption by honeybees under laboratory or field conditions disrupts the host gut
microbiota and affects health [65]. Dai et al. tested the effect of glyphosate on bacterial
diversity in the midgut of Italian honeybees in the laboratory. After treatment with 20 mg/L
glyphosate, the species diversity and richness in the intestinal tract of honeybees changed
significantly, and the survival rate of honeybees decreased [66]. Zhu et al. found that after
Apis mellifera L. ingested the neonicotinoid insecticide nitenpyram, metabolism, detoxifica-
tion, and immune-related genes were significantly changed, resulting in an intestinal flora
imbalance, which further reduced food consumption and the survival of honey bees [67].

4. Negative Effects of Gut Microbes on the Host

Under normal circumstances, the gut microbial community is beneficial to the host.
However, the consumption of pathogenic microorganisms, pesticides, and antibiotics
by insects will lead to disturbance of the insect gut microbiome and endanger insect
health [60,68–70]. Gut microbial disturbances refer to changes in the gut community struc-
ture far exceeding normal levels that put the host in an unfavorable state. Li et al. found
that after Plutella xylostella fed on Bt Cry1Ac, gut microbial diversity was significantly
reduced, while the relative expression of bacterial load and immune genes was significantly
up-regulated, and insect death was accelerated [71]. Tan et al. found that co-infection of
Paranosema locustae and B. bassiana with Locusta migratoria altered gut microbiota homeosta-
sis and accelerated death [72]. Previous studies have shown that phoxim exposure to B. mori
affected gut bacterial community composition and function [69]. Li et al. found that vacci-
nation with sublethal doses of acetamiprid activates the Duox-ROS system and induces
ROS accumulation, leading to intestinal dysbiosis and the translocation of Pseudomonas
and Staphylococcus to the hemolymph. Acetamiprid-treated B. mori larvae inoculated with
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E. cloacae significantly reduced survival and body weight [73]. The expression of peritrophic
membrane protein-related genes BmCBP-02, BmPM-41, BmPM-43, and BmCDA7, as well as
the toll signaling pathway-related genes Bmcactus, Bmspatzle, and Bmrel, was significantly
down-regulated in the gut of B. mori following exposure to phoxim, leading to B. mori’s sus-
ceptibility to E. cloacae [74]. Silva et al. found that G. mellonella larval mortality and immune
responses were significantly increased when inoculated with sub-inhibitory concentrations
of nisin and S. enterica [75].

In addition, antibiotics are frequently used to prevent bacterial infection of larval hon-
eybees, but prolonged use of antibiotics leads to disruption of gut microbial homeostasis,
increasing susceptibility to opportunistic pathogens and affecting honeybee health [76].
Meyel et al. found that after feeding on rifampicin by European earwig larvae, the home-
ostasis of the host’s gut microbes was disrupted, and the weight of eggs and larvae de-
creased [77]. Powell et al. found that Apis mellifera ingested tylosin tartrate, which sig-
nificantly increased their susceptibility to S. marcescens [78]. Schretter et al. found that
Drosophila feeding on antibiotics (sterile Drosophila larvae) leads to hyperactive motor be-
haviors. After supplementation with Lactobacillus brevis, the motor behavior of Drosophila
was improved [79]. These results suggest that intestinal microbial homeostasis is crucial to
host health.

Some gut commensal bacteria may be transformed into pathogenic bacteria in the pres-
ence of dysregulated insect gut microbial homeostasis, such as S. marcescens, Pseudomonas
protegens Ramette, and B. cereus, which can elicit host immune responses and disrupt gut
microbial homeostasis, and thus pose a serious threat to insect health [80–82]. S. marcescens,
a symbiotic bacteria in the mosquito gut, secretes a secreted protein called SmEnhancin
to facilitate arbovirus infection [75,83]. Johnson et al. found that Drosophila significantly
increased the host’s susceptibility to B. bassiana after feeding on Pseudomonas protegens
Ramette. After S. exigua fed on Bt GS57, gut microbial diversity was significantly reduced.
Bt GS57 accelerates insect death when complexed with the gut commensal B. cereus [81]. To
sum up, the interaction between conditioned pathogenic bacteria and insect intestinal mi-
croorganisms will affect their insecticidal activity in insects, which provides a new research
direction into the pathogenic mechanisms of fungi/bacteria in insects.

5. Detection Methods of Insect Gut Microbes

5.1. Traditional Identification Methods
The traditional identification methods of gut microbes refer to methods that utilize

morphological, physiological, and biochemical characteristics as evaluation criteria. For
a long time, the identification of gut microbes has always followed the identification of
species by purification culture, morphological, physiological, and biochemical charac-
teristics [84–86] (Table 2). At present, the traditional culture detection method needs to
inoculate the isolated microorganisms in the NA medium, LB medium, BHI medium,
KIA medium, LIA medium, and TSI medium. Due to the limitations of medium compo-
nents and culture conditions, many insect gut bacteria cannot be cultured [87,88]. Anjum
et al. used biochemical analysis, 16S rDNA sequencing, and bioinformatics to identify
150 aerobic or facultative anaerobic bacteria from the guts of 45 worker bees. It was found
that there are mainly Staphylococcus, Bacillus, Enterococcus, Corynebacterium, and Micrococcus
in the intestinal tract of honeybees. The isolated bacteria are resistant to acidic environ-
ments and ferment sugars, which are beneficial to the survival of bees [89]. Khan et al.
used high-throughput sequencing and found that the gut of honeybees contained (Firmi-
cutes, Proteobacteria, Actinobacteria, Flavobacteriia, and Mollicutes) bacteria and fungi
(Dothideomycetes, Eurotiomycetes, Mucormycotina, Saccharomycetes, Zygomycetes, Yeasts, and
Molds) [8]. Broderick et al., using traditional culture methods, found that culturable mi-
croorganisms in the gut of Lymantria dispar larvae accounted for more than 40% of the
bacteria identified by sequencing [9]. Therefore, the types of gut bacteria identified by
traditional culture methods are very limited, which has great limitations for revealing the
diversity and composition of insect gut microbes.
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5.2. Electrophoresis
With the development of DNA labeling technology, many new molecular markers have

been used for the classification and identification of bacteria, such as restriction/amplified
fragment length polymorphism (RFLP/AFLP), denatured gradient gel electrophoresis
(DGGE), amplified rDNA restriction analysis (ARDRA), and pulsed-field gel electrophore-
sis (PFGE). Both RFLP and ARDRA require the use of endonucleases to digest specific
PCR amplification products and then obtain fragments of different numbers and lengths
to distinguish bacteria. This method is suitable for strains that have been successfully
isolated and can determine whether there are differences in the genus of a large number of
strains [90,91] (Table 2). He et al. identified 12 and 11 species in the Camponotus midgut,
respectively, utilizing traditional culture methods and 16S rRNA-RFLP technology [92].
Dec et al. used 16S-ARDRA and MALDI-TOF technology to isolate 80 Lactobacillus strains
from the cloaca of chicken, goose, and turkey, reaching the species level [93]. AFLP gen-
erally requires a pair of endonucleases to digest genomic DNA and then add artificial
linkers at both ends of the digested product. Using this as a DNA template, specific primers
are used to amplify the DNA. Identification of bacteria by analysis of the different DNA
fragments generated by gel electrophoresis [94]. Lindstedt et al. found that AFLP had a
better discriminative ability in identifying C. jejuni strains than PFGE and PCR-RFLP [95].
DGGE is a technology that separates DNA fragments of the same size with different base
compositions, and the melting behavior of the deforming agent at different concentrations
is different, resulting in different mobility, so as to separate them [96]. Lin et al. used
PCR-DGGE technology to successfully obtain 15 different bands in the study of the micro-
bial diversity in the gut of the diamondback moth P. xylostella. Phylogenetic tree analysis
revealed that the dominant bacteria in the gut of 4th instar P. xylostella larvae belonged to
Actinobacteri, Proteobacteria, and Firmicutes [97].

5.3. Molecular Detection Method Based on 16S rRNA Gene
At present, microorganisms can be more accurately distinguished according to the

variable region in the bacterial 16S rRNA gene sequence, fungal 18S rRNA, or internal
transcribed spacer (ITS) sequence. Among them, the 16S rRNA gene is a DNA sequence
corresponding to the ribosome 30S small subunit in prokaryotic cells, which is present in all
bacterial genomes. The 16S rRNA gene is highly conserved and specific in all bacteria, and
universal primers can be used to identify the species of microorganisms. Specific primers or
probes can also be designed based on the variable region of the 16S rRNA gene to identify
specific strains (Table 2). Snyman et al. collected 78 bacterial strains from the midgut of
Busseola fusca larvae from 30 sites in South African maize production areas and used 16S
rRNA gene sequencing to identify them. The results revealed that the midgut of B. fusca
larvae mainly contained three phyla, Proteobacteria, Actinobacteria, and Firmicutes, and
20 species from 15 genera, including Bacillus, Enterococcus, and Klebsiella [98]. Yadav et al.
collected Aedes larvae and pupae in India and used 16S1/16S2 primers to identify the
isolated gut bacteria. Twenty-four strains of Aedes larval gut bacteria were identified
as belonging to four phyla: Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacte-
ria [99]. Based on the 16S rRNA V4 hypervariable region, the 515F/806R primers were
used to identify the secondary commensal bacteria Hamiltonella in the intestinal tract of
Bemisia tabaci MED [100]. When the Ham-F/R primers were used to detect the intestinal
bacteria of B. tabaci by ordinary PCR, the secondary symbiotic bacteria Hamiltonella was
detected in vivo [101,102]. However, Su et al. used 341F/805R primers to molecularly
identify the intestinal microbes in B. tabaci MEAM1 but did not discover Hamiltonella in its
body [103]. However, 16S rRNA amplicon sequencing analysis is usually limited to relative
community insights that do not even represent relative abundances well due to extraction
and amplification biases. Recent method additions involve the addition of internal and
external standards to account for this shortcoming. Therefore, based on the 16S rRNA
gene sequence, the preference of the designed primers may lead to different abundances
in some bacteria.
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5.4. qRT-PCR
qRT-PCR is based on the continuous accumulation of PCR reaction products, and the

amount of fluorescence increases proportionally. The amount of nucleic acid is determined
by detecting the amount of fluorescence in the sample. Regarding qRT-PCR, I consider that
the inclusion of controls and independent confirmation of species/strain identification is of
the highest importance, e.g., by (high-resolution) melting-curve analysis and sequencing
of PCR products. Quantification beyond presence/absence requires standards for each
species/strain, but a further improvement is represented by digital PCRs, which really
quantify the presence/absence of template molecules (Table 2). Wei et al. used qRT-
PCR technology to discover that the relative expression level of S. marcescens in the gut
of Anopheles was significantly up-regulated after Duox gene silencing [60]. Tong et al.
used qRT-PCR technology to detect Bacteroides fragilis in clinical specimens. The results
demonstrated that the target bacteria were detected by qRT-PCR from 132 samples (33%),
which was much higher than the target bacteria detected by the culture method from
31 samples (8%) [104]. Sedgley et al. used qRT-PCR to detect E. faecalis in the provided
samples. The results revealed that qRT-PCR detected the target bacteria from five samples
(17%), which was much higher than the target bacteria detected from two samples (7%) in
the parallel culture experiment [105]. This indicates that qRT-PCR is a rapid and sensitive
detection method for identifying bacterial species.

Table 2. Detection methods, advantages and disadvantages, and applications of intestinal microorganisms.

Techniques Advantages Disadvantages Application References

Traditional culture method Low-cost.

Many bacteria cannot
be cultured because of

the limitations of
culture medium and

culture condition.

Staphylococcus, Bacillus,
Enterococcus, Corynebacterium,

Micrococcus
Dothideomycetes, Eurotiomycetes,

Mucormycotina,
Saccharomycetes, Zygomycetes,

Yeasts, Molds

[8,87–89]

Electrophoresis
Rapid analysis of a

large number
of specimens.

Suitable for small DNA
fragments, and can

only reflect the
dominant genus.

Lactobacillus,
Campylobacter jejuni [93,95,97]

Molecular detection
method based on 16S

rRNA gene

Generally accurate to
the level of genus, a

few can be identified to
species. For some

bacteria, the similarity
of sequences in

hypervariable regions
is very high.

Other methods and
techniques are needed

to identify
species with small

interspecific differences.

Bacillus, Enterococcus,
Klebsiella,

Hamiltonella
[98,100–102]

qRT-PCR

The method is simple,
rapid, quantifiable,

repeatable, sensitive,
and specific and can be
used to detect live and

dead bacteria.

High cost, strict
requirements for the

operation of laboratory
personnel, the need for

specific instruments
and reagents.

Serratia marcescens, Bacteroides
fragilis, Enterococcus faecalis [60,104,105]
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Table 2. Cont.

Techniques Advantages Disadvantages Application References

Metagenomics

Metagenomics overcomes
the technical
limitations of

traditional pure culture
methods and can

provide information
about low abundance

or even trace
microorganisms in the
environment, which
can more accurately

reflect the true state of
microbial survival.

The sequencing data
are large, the price is

much more expensive
than 16S sequencing,
and the computing

resources required for
subsequent data

processing are high.

Major Phylum: Firmicutes,
Proteobacteria, Elusimicrobia,

Mycobacterium,
Bacteroidetes
Major Genus:

Enterococcus, Pantoea,
Acinetobacter, Enterobacteriales,

Lactobacillales

[106–110]

5.5. Metagenomics
Metagenomic technology refers to a new technology for studying the structure and

function of the microbial community in a sample. Metagenomics can be challenged by
biases during extraction, amplification, and subsequent assembly steps (e.g., Gram-positive
bacteria with a robust cell wall and species/strains with extremely high/low GC content)
(Table 2). The research found that the intestinal microbes of Termites are dominated by
Firmicutes, Mycobacterium, and Bacteroidetes, and Enterobacteriaceae and Bacteroidetes
are the dominant genera [106]. Firmicutes and Proteobacteria are the dominant phyla
in the intestinal microbes of the Lepidopteran insects S. exigua and S. litura. S. exigua is
dominated by Enterococcus of the family Enterococcus [107,109]. S. litura is dominated by
Pantoea and Acinetobacter [110]. Insect gut microbes were significantly different from other
Lepidopteran insects at the genus level. Therefore, differences at the genus level can be
used as an important indicator for evaluating microbial diversity.

6. Application of Insect Intestinal Microflora in Pest Management

Commensal bacteria in the insect gut play an important role in enhancing host en-
ergy metabolism, immune defense, and resistance to infection by pathogenic microor-
ganisms [14,27,111]. Therefore, in recent years, more and more studies have focused on
the function of intestinal flora. It is reported that B. thuringiensis kurstaki can induce the
mortality of Lymantri dispar, which depends on the intestinal bacteria of the host [112].
Paramasiva et al. found that the elimination of intestinal flora in H. armigera affected the
sensitivity of B. thuringiensis to H. armigera [113]. However, the insecticidal activity of the
B. thuringiensis HD-73 strain against Manduca sexta and the insecticidal activity of diverse
doses of B. thuringiensis HD-1 and HD-73 strains against P. xylostella larvae indicate that the
presence of gut microbes is not essential [114]. Since then, various methods have been used
to demonstrate the role of insect gut microbes in the pathogenicity of B. thuringiensis, but
until now, it has been hard to reach a consistent conclusion.

Insect intestinal symbiotic bacteria have been isolated and purified from different
insects, and the functions of a few isolated bacteria have been reported. In mosquitoes,
the intestinal symbiotic bacteria S. marcescens can significantly promote the tolerance of
mosquitoes to arboviruses by secreting toxin proteins [60]. Wei et al. also confirmed that
the interaction between B. bassiana and mosquito intestinal microbes can accelerate the
death of mosquitoes [60]. Ren et al. found that antibiotics secreted by B. cereus can decrease
the number of symbiotic intestinal flora in the co-infection experiment of B. cereus and
B. thuringiensis and promote the infection of B. thuringiensis [115]. Therefore, research on
the function of conditionally pathogenic bacteria in the insect intestine may be an important
research direction to increase the insecticidal activity of B. thuringiensis.
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